About

I am a research scientist in Gerhard Wagner’s group at Harvard Medical School, where I study protein structure and function. Our group uses a number of  biochemical and biophysical techniques, but principally we used Nuclear Magnetic Resonance (NMR) to study proteins. NMR is a powerful tool to observe protein structure, but is invaluable for studying protein dynamics and function at the atomic level. It is through these studies we are uncovering how protein-protein interactions, small molecule binding and enzymatic reactions are mediated by a protein’s ability to flex and move.

I am primarily interested in understanding how proteins adopt multiple structural states while acting as enzymes and transporters in pathogenic bacterial systems. While NMR is a powerful technique, it is often limited in the types of systems were it can be applied successfully. Part of my research efforts focus on circumventing these limitations by using advanced data acquisition techniques and novel chemical labeling schemes.

Resources

Extracting Exchange Kinetic Parameters from ZZ / Nz type NMR Spectra.

This has been coded in python3 and uploaded to my GitHub site. You can find more details here.

Poisson Gap Sampling Scheduler for Topspin 3.0+

A tarball for the Poisson Gap Sampling Scheduler Macro for Bruker Topspincan be downloaded from here. Get the file, untar it and read the readme file for installation details.

Poisson Gap Sampling Scheduler for Topspin 3.0+ and 4.0+

New Macro for Poisson Gap Sampling can be found here: https://github.com/nomadiq/nusPGS_TS3_TS4_Distro

Non-Uniform Sampling with hmsIST Resource Page

An extensive manual and resource page for the hmsIST reconstruction of Non-uniform Sampled data was originally placed under Gerhard Wagner’s web page. Because HMS is always changing things I moved my contributions to this location.

Publications

24) Robson, S.A., Arthanari, H., Hyberts, S.G. and Wagner, G. (2019) Nonuniform sampling for NMR spectroscopy. Methods in Enzymology 614, 263.

23) Coote, P.W., Robson, S.A., Dubey, A. et al. (2018) Optimal control theory enables homonuclear decoupling without Bloch–Siegert shifts in NMR spectroscopy. Nat Commun 93014 .

22) Robson, S.A., Takeuchi, K., Boeszoermenyi, A. et al. (2018) Mixed pyruvate labeling enables backbone resonance assignment of large proteins using a single experiment. Nat Commun 9356.

21) Hyberts, S. G., Robson, S. A., Wagner, G. (2017) Interpolating and extrapolating with hmsIST: seeking a tmax for optimal sensitivity, resolution and frequency accuracy. J. Biomol. NMR 68 (2), 139-154.

20) Nartey, W., Basak, S., Kamariah, N., Manimekalai, M., Robson, S., Wagner, G., Eisenhaber, B., Eisenhaber, F., Grüber, G. (2015) NMR studies reveal a novel grab and release mechanism for efficient catalysis of the bacterial 2‐Cys peroxiredoxin machinery. FEBS J. 282 (23), 4620-4638.

19) Nogueira, M. L. C., Sforça, M. L., Chin, Y. K. Y., Mobli, M., Handler, A., Gorbatyuk, YV. Y., Robson, S. A., King, G. F., ueiros-Filho, F. J., de Mattos Zeri, A. C. (2015) Backbone and side chain NMR assignments of Geobacillus stearothermophilus ZapA allow identification of residues that mediate the interaction of ZapA with FtsZ. Biomol. NMR Assign. 9 (2) 387-391.

18) Hyberts, S. G.*, Arthanari, H.*, Robson, S. A.*, Wagner, G. (2014) Perspectives in Magnetic Resonance: NMR in the Post-FFT Era. J. Magn. Reson. 241, 60-73. *Equal contribution

17) Spirig, T., Malmirchegini, G.R., Zhang, J., Robson, S.A., Sjodt, M., Liu, M., Kumar, K.K., Dickson, C. F., Gell, D. A., Lei, B., Loo, J.A., Clubb, R. T. (2013) Staphylococcus aureus uses a novel multidomain receptor to break apart human hemoglobin and steal its heme. J. Biol. Chem. 288 (2), 1065-1078.

16) Hyberts, S.G., Robson, S. A., Wagner, G. (2012) Exploring signal-to-noise ratio and sensitivity in non-uniformly sampled multi-dimensional NMR spectra. J. Biomol. NMR 55 (2), 167-178.

15) Wommack, A. J., Robson, S. A., Wanniarachchi, Y. A., Wan, A., Turner, C. J., Wagner, G., Nolan, E. M. (2012) NMR Solution Structure and Condition-Dependent Oligomerization of the Antimicrobial Peptide Human Defensin 5. Biochemistry. 51 (48), 9624–9637.

14) Robson, S.A., Jacobitz, A.W., Philips, M.L., Clubb, R.T. (2012) Solution Structure of the Sortase Required for Efficient Production of Infectious Bacillus anthracis Spores. Biochemistry. 51(40), 7953-63.

13) Villareal, V.A., Spirig, T., Robson, S.A., Liu, M., Lei, B., Clubb, R.T. (2011) Transient weak protein-protein complexes transfer heme across the cell wall of Staphylococcus aureus. J. Am. Chem. Soc. 133, 14176-9.

12) Rowland, S.L,, Wadsworth, K.D., Robson, S.A., Robichon, C., Beckwith, J., King, G.F. (2010) Evidence from artificial septal targeting and site-directed mutagenesis that residues in the extracytoplasmic β domain of DivIB mediate its interaction with the divisomal transpeptidase PBP 2B. J. Bacteriol. 192, 6116-25.

11) Weiner, E. M., Robson, S., Marohn, M., Clubb, R. T. (2010) The Sortase A Enzyme That Attaches Proteins to the Cell Wall of Bacillus anthracis Contains an Unusual Active Site Architecture. J. Biol. Chem.  285 (30), 23433-23443.

10) Robson, S.A., Peterson, R., Bouchard, L.S., Villareal, V.A., Clubb, R.T. (2010) A heteronuclear zero quantum coherence Nz-exchange experiment that resolves resonance overlap and its application to measure the rates of heme binding to the IsdC protein. J. Am. Chem. Soc. 132, 9522-3.

9) Pilpa, R.M.*, Robson, S.A.*, Villareal, V.A., Wong, M.L., Phillips, M. and Clubb, R.T. (2009) Functionally distinct NEAT (NEAr Transporter) domains within the Staphylococcus aureus IsdH/HarA protein extract heme from methemoglobin. J. Biol. Chem. 284, 1166-1176. *Equal contribution

8) Villareal, V.A., Pilpa, R.M., Robson, S.A., Fadeev, E.A. and Clubb, R.T. (2008) The IsdC protein from Staphylococcus aureus uses a flexible binding pocket to capture heme. J. Biol. Chem. 283, 31591-31600.

7) Gorbatyuk, V.Y., Nosworthy, N.J., Robson, S.A., Bains, N.P., Maciejewski, M.W., Dos Remedios, C.G., King, G.F. (2006). Mapping the phosphoinositide-binging site on chick cofilin explains how PIP2 regulates the cofilin-actin interaction. Mol. Cell. 24, 511-522.

6) Robson, S.A., and King, G.F. (2006) Domain architecture and structure of the bacterial cell division protein DivIB. PNAS 103, 6700-5.

5) Robson, S.A., and King, G.F. (2005) Backbone and side-chain 1H, 15N, and 13C assignments for the minor cis conformer of the b domain of the bacterial cell division protein DivIB. J. Biomol. NMR 33, 135.

4) Robson, S.A., Gorbatyuk, V.Y., Maciejewski, M.W., King, G.F. (2005) Backbone and side-chain 1H, 15N, and 13C assignments for the beta domain of the bacterial cell division protein DivIB. J. Biomol. NMR 31, 261-262.

3) Robson, S.A., Michie, K.A., Mackay, J.P., Harry, E., King, G.F. (2002) The Bacillus subtilis cell division proteins FtsL and DivIC are intrinsically unstable and do not interact with one another in the absence of other septasomal components. Mol. Microbiol. 44, 663-74.

2) Bains, N.P.S., Gorbatyuk, V.Y., Nosworthy, N.J., Robson, S.A., Maciejewski, M.W., dos Remedios, C.G., and King, G.F. (2002) Backbone and sidechain 1H, 15N, and 13C assignments for chick cofilin reveal an error in the reported sequence. J. Biomol. NMR 22, 193-194.

1) Blair, D.H., Robson, S., King, G., Bennett, M.R. (2001) Vesicle-associated proteins and transmitter release from sympathetic ganglionic boutons. Neuroreport. 12, 607-10.

Top